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Abstract—In this work, we propose an advanced AI-based
grading system for OCT images. The proposed system is a very
deep fully convolutional attentive classification network trained
with end-to-end advanced transfer learning with online random
augmentation. It uses quasi-random augmentation that outputs
confidence values for diseases prevalence during inference. It’s
a fully automated retinal OCT analysis AI system capable of
pathological lesions understanding without any offline prepro-
cessing/postprocessing step or manual feature extraction. We
present a state-of-the-art performance on the publicly available
Mendeley OCT dataset.

I. INTRODUCTION

Sight-threatening retinal diseases are one of the major
prevailed diseases among the population of varied age groups.
Prevalence of retinal diseases among age groups and demo-
graphics are the main factor of vision loss. Starting with
diabetic retinopathy (DR), glaucoma, age-related macular de-
generation (AMD) etc are the most common retinal diseases
observed in society. Almost all of the retinal diseases can
be identified using Optical coherence tomography (OCT) [3]
scans. OCT is a non-invasive optical imaging technique that is
the optical analog of ultrasound imaging. This device provides
high-resolution cross-sectional images of the retina, optic
nerve head and retinal nerve fiber layer thickness (RNFL) that
can be qualitatively and quantitatively evaluated. It was origi-
nally developed to provide objective and quantitative estimates
of the thickness of the RNFL. OCT RNFL measurements are
reproducible and have been shown in cross-sectional studies
to be able to discriminate glaucomatous from healthy eyes [7].
With OCT, an ophthalmologist can see each of the distinctive
layers of Retina. This allows the ophthalmologist to map
and measure their thickness. These measurements help with
diagnosis and treatment guidance for glaucoma and other
diseases of the retina. These retinal diseases include CNV,
DME, and Drusen. Choroidal neovascularization (CNV) [5]
involves the growth of new blood vessels that originate from
the choroid through a break in the Bruch membrane into the
sub-retinal pigment epithelium (sub-RPE) or sub-retinal space.
CNV is a major cause of visual loss. Diabetic Macular Edema
(DME) [6] occurs when fluid and protein deposits collect on
or under the macula of the eye (a yellow central area of
the retina) and cause it to thicken and swell (edema). The
swelling may distort a person’s central vision because the
macula holds tightly packed cones that provide sharp, clear,
central vision to enable a person to see detail, form, and color
that is directly in the center of the field of view. Drusen

are yellow deposits under the retina. Drusen are made up of
lipids, a fatty protein. Drusen likely do not cause AMD. But
having drusen increases a person’s risk [4] of developing
AMD. There are different kinds of drusen. “Hard” drusen
are small, distinct and far away from one another. This type
of drusen may not cause vision problems for a long time,
if at all. “Soft” drusen are large and cluster closer together.
Their edges are not as clearly defined as hard drusen. This
soft type of drusen increases the risk of AMD. OCT also
represents a promising new technology for imaging vascular
microstructure [8] with a level of resolution not previously
achieved with the use of other imaging modalities. Considering
the usefulness of OCT in detecting almost all retinal diseases
we propose to use AI in the OCT analysis domain. We have
developed an AI model that can be used to detect the presence
of CNV, DME and Drusen can help doctors in diagnosing
giving correct treatment, which can be used as a screening
tool in clinics making adequate healthcare available to all the
population and reducing the burden on doctors. The proposed
model builds upon recent advancement of deep learning and
computer vision. Our novel deep model can outperform human
ophthalmologist in the field of oct analysis.

Fig. 1. Artelus AI OCT screening

A. Contribution

OCT classification learning: We present an ophthalmol-
ogist performance level OCT AIAS system for eye diseases
diagnosis. Following are the advantages of the proposed AIAS
system?

• Trained on a small number of samples with better gener-
alization performance.

• A novel deep learning algorithm that outperform average
human ophthalmologists.



• Faster and deployable in a mobile chip.
• Accessible healthcare in remote areas.

B. Related Work

Deep learning is successfully applied in many applica-
tions of the medical image analysis domain. Tasks related
to features segmentation [11] and feature classification [15]
can be performed using both traditional computer vision and
deep learning. Deep learning recently captured momentum
to outperform traditional features based methods used in the
medical image domain. Starting from retinal analysis to cancer
analysis, deep learning proved its usefulness as screening
and diagnostic tools for doctors. In the eye [14] and X-ray
[10] screening scenarios deep learning outperforms human
practitioners.

Deep learning is also widely used in OCT image analysis
task. A deep learning based OCT image segmentation method
[12] proposed pathological lesions segmentation using a fully
convolutional method. Intraretinal cystoid fluid and subretinal
fluid detection deep learning method [15] using OCT was
successfully tested with high accuracy. In case patient referral
recommendation for sight-threatening retinal diseases using
OCT images [13], this deep learning method outperforms
expert ophthalmologist.

II. METHOD

A. Dataset

• Mendeley dataset [23]: It has total 84495 OCT images
with 3 diseases and 1 normal class.To train the model 75K
of these images were used. Extensive data augmentation
techniques with more than 230 convolutional layers were
used to train the deep model for CNV, DME, DRUSEN
and Normal OCT image classification. A validation set
of total 8346 images with 2631 normal images and 5715
images with CNV, DME, and Drusen was used to check
the accuracy of the model in both binary classification
and multiclass classification. A test set of total 1000
images with 250 normal images and 750 images with
CNV, DME, and DRUSEN was used to test the accuracy
of the model in both binary classification and multiclass
classification.

• Artelus dataset: It has total 4500 images with 4 prominent
eye diseases namely Age related Macular Degenera-
tion (AMD), Central Serous Retinopathy(CSR), Diabetic
Retinopathy (DR) and Macular Hole (MH). This dataset
is split into 3 splits by maintaining the class distribution
across splits; 70% of the dataset is used for training, 15%
of the dataset is used for validation and rest 15% for test.

B. Proposed Algorithm

Deep learning is proved to be the current state-of-the-art
for computer vision/image processing, speech, text problems
and automotive. We propose a very deep network that has
around 50 million trainable parameters and 250 layers deep
with custom convolutional blocks. The proposed network is a
modified version of network architecture presented in [18].

Values of the network parameters are learned using Adam
optimizer algorithm. The neural network hyper-parameters
learning is an iterative process based on loss value computed
between ground truths given by ophthalmologists and network
predictions. This loss value acts as a feedback to the optimizer
to learn most representative network parameters to understand
retinal pathological lesions.

C. Network Architecture

Encoder Architecture for Transfer Learning One of the
concerns with medical data is the unavailability of high volume
high quality labeled data. Even the available label by one
single ophthalmologist might not reflect the same opinion as
by another fellow practitioner. For an effective system, we
need data to be labeled by many ophthalmologists. Since it’s
very expensive to get high volume data annotated by multiple
annotators, we have another effective approach to deal with
the same; label noise minimization. We label a fraction of the
dataset by multiple annotators (Golden set) and leave out the
rest of the dataset with single annotation (TFL set). We train
a two heads model with one head to reproduce the sample
using a variational encoder and the second head to classify
the sample on the whole dataset. Sample-wise weighted loss
is used for the classification head. We set high loss weight
for Golden set samples and relatively low loss weight for
TFL set samples. The weighting strategy is based on sample
annotation. The trained encoder parameters will be used for
the initialization of the final deep network for classification.
This way we make sure that all samples pathological features
information are preserved in the encoder network and can be
transferred to the final network.

Fig. 2. Encoder based transfer learning architecture.



Partial attention We use a modified version of the partial
attention [17] over the lower blocks of the classifier feature
maps. Feeding the intermediate feature maps information
to the higher layers improve the learning stability and the
representation power of the network. It also facilitates easier
training of very deep model by eliminating the vanishing
gradient problem. The attention mechanism here only focuses
on the feature maps with spatial resolutions equal to or
larger than that of the target feature map outputs. Strided
convolution with stride sij is used to reduce spatial resolution
of the feature maps to match target output size and also to
match the number of output features map as per the attention
configuration. Fig 3 shows an overview of the partial attention
mechanism used, where Ei are the current target feature
maps for attention to applying (before reducing the feature
map width and height for each block) of each convolution
block of the classifier. Attention weights ai are learned using
attention parameters W . Feature-wise attention is applied over
the convolved feature maps and summed up using the attention
weights. The attended features map is again concatenated with
the target feature map to preserve the original information. To
reduce aliasing effect we use another convolutional layer to
get the attended output Eiattended.

sij =
min(heightEi

, widthEi
)

min(heightEj , widthEj )
(1)

Fig. 3. Partial attention over feature maps

Dense Residual Inception module We have used an im-
proved inception block proposed in [18] as a baseline of our
new inception blocks, where block-based convolution layers,
residual and skip connections were used to ensure rich feature
representation. We have added a primary residual connection
from the clock input to the output as shown in Fig 4 to augment
the network with block input features and also to solve the
vanishing gradient problem for a very deep network. Apart
from that, we have used a residual connection in the 3x3

and 5x5 convolutional layers of the block; these connections
improve the network feature representations capability and
also slightly reduces training convergence time. The final
concatenated intermediate output features map of the block
is convolved with another 3× 3 convolutional layer to reduce
aliasing. A residual connection is added with 1× 1 convolved
input features to make sure that both of the features may have
the same number of output filters. Additionally, we have used
a convolution factorization version Fig 5 of the same module
for the classifier. Convolutional factorization adds efficiency
of doing a convolution of a specific spatial dimension with
low computational cost.

Fig. 4. Residual Inception

Fig. 5. Residual Inception with convolution factorization for the classifier
node

III. EXPERIMENTS AND RESULTS
Dataset: We have used a Mendeley and Artelus dataset with

8 distinct classes (CNV, DME, DRUSEN, AMD, CSR, DR,



MH, NORMAl) to train the AI system for OCT analysis. Also
for the second level transfer learning ChestXray-14 dataset is
used to pre-train the network. ChestXray-14 dataset has around
89K cases with 14 distinct labels.

Metrics: The network performance was measured using
the sensitivity and the specificity. We have also computed
precision, recall, and F1-score to further test the performance.

Transfer Learning: Two-step hierarchical transfer learning
is used in this work. In the second step, we have used the
variational auto-encoder based transfer learning II-C on the
training set with the loose label. In the first step, the weight of
the variational auto-encoder is initialized using the pre-trained
model on the ChestXray-14 [9] dataset. It learns diverse
and discriminative features of the chest X-ray images which
holds pixel based resemblance with OCT images. Features
knowledge of the trained auto-encoder model is transferred
to the final classification model trained on the labeled set.

Preprocessing: For the classifier, 224× 224× 3 is used as
the input size. All input images were resized to 256× 256×
3 and a randomly cropped patch of size 224 × 224 × 3 is
used as input. Extensive data augmentation is used such as
random flip left/right, up/down and changing the image pixel
values randomly using hue, contrast, and saturation. Also, each
image is standardized by it’s mean and dividing its standard
deviation. Apart from that, we have also used random masking
of the training images. For each of the training images, we
generate 5 to 8 random masks of varied width and height.
Random masking proved to be useful for generalization of the
deep model.

Fig. 6. ROC plot for OCT

Diseases Sensitivity (%) Specificity (%) AUC
Normal 100 100 1.0
abnormal 100 100 1.0

TABLE I
MODEL PERFORMANCE FOR BINARY NORMAL VS ABNORMAL

CLASSIFICATION ON THE TEST SET

Framework: We have used TEFLA [2], a python frame-
work developed on the top of TENSORFLOW [22], for all
experiments described in this work.

Fig. 7. T-SNE plot of 1000 test samples using the deep model presented in
this work.

Fig. 8. Heatmap of the model: Region of interest the model is looking at
while making prediction.

Training procedure: Batch normalization [21] is used to
reduce covariate shift and achieve faster convergence of both
models. Also, we have used Nesterov momentum optimizer
with polynomial learning rate policy. Gradient normalization
[19] was used to stabilize the training process. To improve
generalization capability we have used label smoothing (soft



Diseases Precision (%) Recall (%) F1-score
Normal 100 100 1.0
CNV 99 100 1.0
DME 100 100 1.0
Drusen 100 100 1.0
AMD 100 100 1.0
CSR 99 100 1.0
DR 100 100 1.0
MH 100 100 1.0

TABLE II
MODEL PERFORMANCE FOR MULTI-CLASS CLASSIFICATION ON THE TEST

SET

targets). Dropout and batch sample balancing technique was
used to ensure that the network doesn’t overfit. Five models
with different architectures were trained on the same training
and validation set. For the pre-trained ChestXray-14 model
used for second level transfer learning, we have also explored
weight initializations from the same network trained on the
Imagenet [20] dataset.

Results analysis: We have done extensive performance
analysis using binary and multi-class classification metrics.
Figure 6 shows the receiver operating curve (AUC) for normal
vs disease classification. It can be seen that our classifier has
very high sensitivity and specificity surpassing human oph-
thalmologists level performance. The trained deep model was
able to learn very discriminative features. We have computed
T-SNE visualization of 1000 test samples feature for 4 classess
computed by the learned model. Figure 7 shows the T-SNE
visualization of the test samples; the features for different
classes are widely separated and the model was able to learn
proper discrimination among different oct lesions.

Apart from T-SNE analysis, we have also validated our
model prediction using heat map analysis. The heat map shows
the region of interest the model is looking at while making the
prediction. Figure 8 shows the Artelus AI model heat map on
a few sample images. The model was able to learn retinal
lesions responsible for sight-threatening diseases.

Table I shows the model performance on the test dataset for
normal vs abnormal classification. We have achieved 100%
sensitivity and 100% specificity for normal vs abnormal task.
Table II shows the multi-class performance of the model on the
test set. The AI system can screen with expert ophthalmologist
level performance.

IV. CONCLUSION

In this work of OCT images, a deep learning based AIAS
system with high sensitivity and specificity for detecting eye
diseases using OCT scans is presented. The proposed AIAS
system with sensitivity 100% and specificity 100% on our test
dataset will enhance accuracy and response time for OCT-
based diagnosis. Temporal consistency of grading across OCT
images for a specific operating point is an added efficiency
of an automated AIAS system. This model could be used for
screening and the development of computer-aided diagnosis
tools in the future for management of progression of retinal

diseases by reducing the burden on doctors and making health
care available to all the population.
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