
Towards Radiologist-Level Accurate Deep Learning
System for Pulmonary Screening

Mrinal Haloi, Raja Rajalakshmi K, Pradeep Walia
Artelus

{mrinalhaloi, rkodhandapani, pwalia}@artelus.com

Abstract—In this work, we propose advanced pneumonia and
Tuberculosis grading system for X-ray images. The proposed
system is a very deep fully convolutional classification network
with online augmentation that outputs confidence values for
diseases prevalence. Its a fully automated system capable of
disease feature understanding without any offline preprocessing
step or manual feature extraction. We have achieved state- of-the-
art performance on the public databases such as ChestXray-14,
Mendeley, Shenzhen Hospital X-ray and Belarus X-ray set.

I. INTRODUCTION

One-third of the world’s population is thought to be infected
with TB [1]. New infections occur in about 1% of the
population each year [2]. In 2016, there were more than 10
million cases [3] of active TB which resulted in 1.3 million
deaths. This makes it the number one cause of death from
an infectious disease and more than 95% of deaths occurred
in developing countries. Pneumonia affects approximately 450
million people [4] globally (7% of the population) and results
in about 4 million deaths per year.

For screening and diagnosis of Pneumonia and Tuberculosis
chest X-rays [5] play a very critical role due to its availability
and affordability. Expert radiologists are required to interpret
results from X-rays and it’s a challenging task. There arent
an adequate number of experienced radiologists especially
in the developing countries, many patients dont get proper
care. Fast and reliable automatic computer-aided screening
and diagnosis system will reduce the burden on specialists and
will give better performance for mass screening. An automated
artificial intelligence aided screening (AIAS) system shown in
Fig. 2 will help patients at remote areas where radiologists
and connectivity arent readily accessible.

Classification of Pneumonia and Tuberculosis is a challeng-
ing task due to many similar pathological features associated
with other diagnoses. Even expert radiologists make wrong
diagnoses due to complex nature of these features. This results
in disagreements even among radiologists [23] for Pneumonia
and TB classification.

We make use of deep learning to develop an advanced X-ray
screening system. Deep learning is an algorithmic technique
that is revolutionizing what is possible in areas such as finance,
healthcare, communication, automotive, natural language pro-
cessing, computer vision and more. It allows computers to
analyze vast amounts of data and automatically detect patterns
and make accurate predictions. Deep Learning could help

Fig. 1. Chest X-ray: Pneumonia and Tuberculosis cases; using our 211 layers
deep model the above cases are correctly identified

Fig. 2. AIAS system for X-ray screening

doctors screening and diagnosis Pneumonia and Tuberculosis
more quickly and more accurately.

In most of the computer-based screening environment set-
ting sensitivity and specificity are used as AIAS system’s
efficiency measurement criteria. Using our AIAS system we
report 96 % sensitivity for Pneumonia and 92.5 % sensitivity
for Tuberculosis on publicly available datasets.

A. Contribution

X-ray classification learning: We present a radiologists
performance level chest X-ray AIAS system for Tuberculosis
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and Pneumonia. Following are the advantages of the proposed
AIAS system:

• Trained on a small number of samples with better gener-
alization performance.

• State-of-the-art results for Tuberculosis and Pneumonia
classification.

• Faster and deployable in a mobile chip.
• Accessible healthcare in the remote areas.

II. METHOD

A. Dataset

We have used four publicly available datasets in this work.
• ChestXray-14 [6]: The NIH Clinical Center published

this dataset of high-quality X-ray images of 32K unique
patients. It includes 112K images and 14 associated dis-
eases labels mined from radiologists report using natural
language processing.

• Mendeley [7]: Mendeley published this dataset of 5856
X-ray images of patients diagnosed with Pneumonia.
This set contains both normal cases and cases with
manifestations of Pneumonia.

• MC-SC-Xray [8]: It includes datasets from Montgomery
County chest X-ray set and Shenzhen chest X-ray set.
The set contains 800 X-ray images, of which 406 are
normal cases and 394 are cases with manifestations of
TB.

• Belarus [9]: Belarus public health published X-ray images
of 107 patients images. The set contains both normal
cases and cases with manifestations of TB.

B. Proposed Algorithm

Deep learning is proved to be the current state-of-the-art for
computer vision/image processing, speech, text problems. We
propose a very deep network to predict disease label based on
X-ray image pixel values. The proposed network has around
45 million trainable parameters and 211 layers deep. The
proposed network is a modified version of network architecture
[10]. Values of those parameters are learned using stochastic
gradient descent with Nesterov momentum algorithm. All
parameters are initialized using random values sampled from
a truncated Gaussian distribution. The parameter of learning
is an iterative process based on disagreements between the
grades predicted by the network and the radiologists. The
disagreements value is used as feedback to optimize network
parameters to understand chest pathological features.

C. Network Architecture

Residual Inception module We have used a modified
version of the base inception block proposed in [10], where
block-based convolution layers and skip connections were
used to ensure rich feature representation. We have added a
residual connection from the block input to output as shown
in Fig 3. The concatenated features were convolved with
another 3 × 3 convolution to reduce aliasing and added with
1×1 convolved input features; both operations have the same
number of output filters. Apart from that, we have used a

convolution factorization version Fig 4 of the same module
for the classifier.

Fig. 3. Residual Inception

Fig. 4. Residual Inception with convolution factorization for the classifier
node

Partial attention We use partial attention [13] over the
selected classifier feature maps. Feeding the intermediate
feature maps information to boost the reconstructed feature
map representation power. The attention mechanism here only
focuses on the feature maps with spatial resolutions equal to or
larger than that of the target feature map outputs. Max-pooling
to reduce spatial resolution of encoder feature maps to the
target output size; max-pooling ensures maximally activated
features. Fig 5 shows an overview of the partial attention
mechanism used, where Ei are the last feature maps (before
reducing the feature map width and height for each block) of
each convolution block of the encoder. The switch s is on if
the corresponding ai > 0; op is a max-pooling operation for
all ai > 1 with stride ai and identity operation for ai = 1. Ui

is the feature representation of the target layer.

ai =
min(heightEi , widthEi)

min(heightUi
, widthUi

)
(1)



Fig. 5. Partial attention over encoder

III. EXPERIMENTS AND RESULTS

Dataset: We have used ChestXray-14 dataset (80% of the
total dataset cases) to pre-train the network. The training
dataset has around 89K cases with 14 distinct labels. We have
gathered the finetuning set of Tuberculosis and Pneumonia
cases using ChestXray-14 held-out set (20% of the total
dataset cases), Mendeley, MC-SC-Xray and Belarus datasets;
it includes 20K training cases and 1.8K validation cases.

Metrics: The network performance was measured using
AUC, sensitivity and specificity. AUC is the area under the
receiver operating characteristics curve (ROC). Sensitivity or
true positive rate (TPR) is the percentage of the pathological
samples that are classified correctly, defined in eq 2. Specificity
of true negative rate is the percentage of the normal samples
that are classified correctly, defined in eq 3.

TPR = sensitivity =
TP

TP + FN
(2)

TPR = sensitivity =
TN

FP + TN
(3)

Transfer Learning: We have used transfer learning on
the finetuning set. The pre-trained model on ChestXray-14
dataset learns diverse and discriminative features of chest X-
ray images. Using this pre-trained model we fine-tune the
model for Tuberculosis and Pneumonia classification.

Preprocessing: For the classifier, 224× 224× 3 is used as
the input size. All input images were resized to 256× 256×
3 and a randomly cropped patch of size 224 × 224 × 3 is
used as input. Extensive data augmentation is used such as
random flip left/right, up/down and changing the image pixel
values randomly using hue, contrast, and saturation. Also, each
image is standardized by it’s mean and dividing its standard
deviation.

Framework: We have used TEFLA [16], a python frame-
work developed on the top of TENSORFLOW [17], for all the
experiments described in this work.

Diseases Sensitivity (%) Specificity (%) AUC
Pneumonia 96.1 91.03 0.985
Tuberculosis 92.5 85.0 0.949

TABLE I
MODEL PERFORMANCE FOR PNEUMONIA AND TB CLASSIFICATION

Fig. 6. ROC plot for Pneumonia with 0.985 AUC; by changing the
prediction threshold we can tune the sensitivity and the specificity for various
requirements.

Fig. 7. ROC plot for Tuberculosis with 0.949 AUC; by changing the
prediction threshold we can tune the sensitivity and the specificity for various
requirements.

Training procudure: We formulate the AIAS system as
multi-label classification problem in which each class is inde-
pendent and not mutually exclusive. For our scenario, a chest
X-ray can contain the pathological features of both the TB and
Pneumonia at the same time. Weighted sigmoid cross entropy
loss best suited for problems with overlapping domains is
used to optimize the model parameters. Eq 4 outlines the
weighted cross entropy loss in which n denotes the number
of classes and wc denotes the weight of the class c. For
generalization various regularization approaches [14] can be
used. Batch normalization [15] is used to reduce covariate shift
and achieve faster convergence of both models. Also, we have
used Nesterov momentum optimizer with polynomial learning
rate policy. Gradient normalization [11] was used to stabilize
the training process. To improve generalization capability we
have used label smoothing (soft targets). Dropout and batch
sample balancing technique was used to ensure that network
doesn’t overfit. Five models with different architectures were
trained on the same training and validation set. For each
model, we have also explored weight initializations from the
same network trained on the Imagenet [12] dataset.



Loss = −
c=n∑
c=0

wcytruelog(ypredicted) (4)

Fig. 8. Heatmap showing the model’s areas of interest while predicting
diseases. Here the model focuses at the correct locations with pathological
features; this can be used for localization.

Method Sensitivity (%) Specificity (%) AUC
Proposed Model 92.5 85.0 0.949
Jaeger [20] 0.900
Hwang [19] 0.93
MTIslam [18] 80.0 92.0 0.91

TABLE II
MODEL PERFORMANCE COMPARISONS FOR TUBERCULOSIS

Method Sensitivity (%) Specificity (%) AUC
Proposed Model 96.1 91.03 0.985
Wang [6] 0.633
Yao [21] 0.713
CheXNet [22] 0.768

TABLE III
MODEL PERFORMANCE COMPARISONS FOR PNEUMONIA

Figure 6 shows the receiver operating curve (AUC) for
Pneumonia classification and Figure 7 shows the receiver
operating curve for Tuberculosis classification. We have sur-
passed radiologists level performance. Table I shows the model
performance on the dataset with Tuberculosis and Pneumonia
cases. We have achieved 96% sensitivity and 91% specificity
for Pneumonia classification with 0.93 AUC. Tuberculosis we
have achieved 92.5% sensitivity and 85% specificity with 0.89
AUC.

Extensive performance comparisons among several Pneu-
monia classification methods and the proposed deep model
is shown in Table II. Our model performs significantly better
than the current state-of-the-art approaches. Table III shows the

Tuberculosis classification performance comparisons of our
model and several other methods.

The feature representations learning capacity of the X-ray
classification deep model can be understood by its ability to
pay attention at the input image regions with pathological
features. Fig. 8 shows the image regions the model looks at
while predicting disease label.

A. Limitations

The AIAS system is trained on the frontal chest X-ray
images; which results in the system inability to accurately
diagnosis radiographs with lateral views. Overexposed or un-
derexposed chest radiographs affect the radiologist’s readings
and also that of our system. Patients medical histories are not
taken into account while designing the model.

IV. CONCLUSION

In this work of chest X-rays images, a deep learning based
AIAS system with high sensitivity and specificity for detecting
Pneumonia and Tuberculosis is proposed. The proposed AIAS
system with sensitivity 96% will enhance (accuracy and results
time) for Pulmonary screening performance. Temporal consis-
tency of grading across X-ray images for a specific operating
point is an added efficiency of an automated AIAS system. We
aim to incorporate radiographs with lateral views in our next
version of the model also, we will integrate patient medical
histories and lifestyle information to have added advantages
to the model while predicting.
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V. APPENDIX

A. Results on ChestXray-14 Test set

We have also computed the test performance of the model
pre-trained on the ChestX-ray-14 dataset. Table IV shows the
performance comparisons for different abnormalities among
various existed methods and the proposed model. We outper-
form recent state-of-the-art methods on the ChestXray-14 test
set. Deep learning can improve and help radiologists in the
diagnosis and screening of diseases associated with the chest.
It will also reduce response time to generate reports.

Abnormalities Wang [6] Yao [21] Chexnet [22] Proposed
Method

Atelectasis 0.716 0.772 0.8094 0.857
Cardiomegaly 0.807 0.904 0.9248 0.918
Effusion 0.784 0.859 0.8638 0.903
Infiltration 0.609 0.695 0.7345 0.912
Mass 0.706 0.792 0.8676 0.873
Nodule 0.671 0.717 0.7802 0.840
Pneumonia 0.633 0.713 0.7680 0.912
Pneumothorax 0.806 0.841 0.8887 0.906
Consolidation 0.708 0.788 0.7901 0.871
Edema 0.835 0.882 0.8878 0.911
Emphysema 0.815 0.829 0.9371 0.925
Fibrosis 0.769 0.767 0.8047 0.891
Pleural
Thickening

0.708 0.765 0.8062 0.901

Hernia 0.767 0.914 0.9164 0.921

TABLE IV
THE PRE-TRAINED MODEL AUC COMPARISONS WITH EXISTED METHODS

B. MODS Assay Test For TB Validation

The ability to do faster more accurate diagnosis leads us to
our primary goal of reducing the time it takes to screen pop-
ulation in the vulnerable areas or poor socio-economic zones
for early diagnosis of TB and to minimize the spreading of the
germs and transmitting and infecting others in the group. The

ultimate goal of our research is to reduce patient wait times
for being diagnosed with this infectious disease by developing
new machine learning and mobile health techniques to the TB
screening and diagnosis problem.

This approach is greatly in contrasts with the global health
community which has focused its efforts on developing and
testing effective vaccines, improving the diagnosis process,
and promoting patient compliance to the medical treatment.

Efforts to eliminate the TB epidemic are challenged by
the persistent social inequalities in health, the small number
of local healthcare professionals, and the weak healthcare
infrastructure found in resource-poor settings.

Specifically, we aim to design a user-centered, mobile
device-based computing system to significantly expedite the
TB diagnosis process by Developing novel image processing
and machine learning Techniques to analyze chest X-ray
images.

Once a candidate is suspected of having TB during the xray
examination, a MODS test will be administered, and if pos-
itive, appropriate medication will be started, and appropriate
treatment pathway and protocol will be followed.

C. MODS Assay Test

The MODS(Microscopic -Observation Drug Susceptibility)
assay is a faster, low cost, high performance, rapid alterna-
tive for conventional methods for drug susceptibility testing
of Mycobacterium tuberculosis and DST (drug susceptibility
testing) directly from a sputum sample which was developed
by a research team in Lima, Peru.

The MODS assay is based on three principles:
• Mycobacterium tuberculosis (MTB) grows faster in liquid

media than on solid media.
• Microscopic MTB growth can be detected earlier in liquid

media than waiting for the macroscopic appearance of
colonies on solid media, and that growth is characteristic
of MTB, allowing it to be distinguished from atypical
mycobacteria or fungal or bacterial contamination.

• The drugs isoniazid and rifampicin can be incorporated
into the MODS assay to allow for simultaneous direct
detection of MDRTB (multidrug resistant tuberculosis),
obviating the need for subculture to perform an indirect
drug susceptibility test.

The underlying philosophy of MODS is laboratory free-
ware, all the components are readily available from laboratory
suppliers.

MODS has also been recommended by the World Health
Organization (WHO) as an affordable and highly effective
alternative to existing gold standard liquid mycobacterial cul-
ture methods for testing sputum samples of TB-suspected
individuals. This is a very useful screening tool to combat
the great burden of the disease in developing countries.
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